If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+32t+124=0
a = -4.9; b = 32; c = +124;
Δ = b2-4ac
Δ = 322-4·(-4.9)·124
Δ = 3454.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-\sqrt{3454.4}}{2*-4.9}=\frac{-32-\sqrt{3454.4}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+\sqrt{3454.4}}{2*-4.9}=\frac{-32+\sqrt{3454.4}}{-9.8} $
| -36=-8m+12 | | 3/x-6=45 | | 375000=x+(x+80000)÷2 | | 3/5y-10=5 | | 375000=x+(x+80000)/2 | | 7x1=6x-4 | | 9-4y=33 | | 96k+29k=5(2+5k) | | 12+x/3=9 | | 17=-4p-3 | | 9-x5=3 | | -3x=8=35 | | x+20=x-20+x-10 | | 18=11-3x+5x | | 625x^2-1050x+169=0 | | 6x-3+2x=8x7-10 | | 36=17n | | 3x+15=x+25+x+20 | | Y=-1/4x^+7 | | Y=-1t4 | | F(x)=9x^+7x+8 | | -5(2a+7)=-35-8a | | 2x(x+1.5)=-1. | | 1.2x=9.1=14.152 | | y2-10y+23=0 | | 5(x+4)=7(x-6) | | 3/7x-2/7x+13=62 | | 8(-2n-4)=-4(7n-7)+7n | | b2-9=0 | | 0.20=x^2/85-x | | 165-22x=17x | | -8r+4r+18r+-2r=-8 |